Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.

نویسندگان

  • Sybren Ten Cate
  • C S Suchand Sandeep
  • Yao Liu
  • Matt Law
  • Sachin Kinge
  • Arjan J Houtepen
  • Juleon M Schins
  • Laurens D A Siebbeles
چکیده

CONSPECTUS: In a conventional photovoltaic device (solar cell or photodiode) photons are absorbed in a bulk semiconductor layer, leading to excitation of an electron from a valence band to a conduction band. Directly after photoexcitation, the hole in the valence band and the electron in the conduction band have excess energy given by the difference between the photon energy and the semiconductor band gap. In a bulk semiconductor, the initially hot charges rapidly lose their excess energy as heat. This heat loss is the main reason that the theoretical efficiency of a conventional solar cell is limited to the Shockley-Queisser limit of ∼33%. The efficiency of a photovoltaic device can be increased if the excess energy is utilized to excite additional electrons across the band gap. A sufficiently hot charge can produce an electron-hole pair by Coulomb scattering on a valence electron. This process of carrier multiplication (CM) leads to formation of two or more electron-hole pairs for the absorption of one photon. In bulk semiconductors such as silicon, the energetic threshold for CM is too high to be of practical use. However, CM in nanometer sized semiconductor quantum dots (QDs) offers prospects for exploitation in photovoltaics. CM leads to formation of two or more electron-hole pairs that are initially in close proximity. For photovoltaic applications, these charges must escape from recombination. This Account outlines our recent progress in the generation of free mobile charges that result from CM in QDs. Studies of charge carrier photogeneration and mobility were carried out using (ultrafast) time-resolved laser techniques with optical or ac conductivity detection. We found that charges can be extracted from photoexcited PbS QDs by bringing them into contact with organic electron and hole accepting materials. However, charge localization on the QD produces a strong Coulomb attraction to its counter charge in the organic material. This limits the production of free charges that can contribute to the photocurrent in a device. We show that free mobile charges can be efficiently produced via CM in solids of strongly coupled PbSe QDs. Strong electronic coupling between the QDs resulted in a charge carrier mobility of the order of 1 cm(2) V(-1) s(-1). This mobility is sufficiently high so that virtually all electron-hole pairs escape from recombination. The impact of temperature on the CM efficiency in PbSe QD solids was also studied. We inferred that temperature has no observable effect on the rate of cooling of hot charges nor on the CM rate. We conclude that exploitation of CM requires that charges have sufficiently high mobility to escape from recombination. The contribution of CM to the efficiency of photovoltaic devices can be further enhanced by an increase of the CM efficiency above the energetic threshold of twice the band gap. For large-scale applications in photovoltaic devices, it is important to develop abundant and nontoxic materials that exhibit efficient CM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activating Carrier Multiplication in PbSe Quantum Dot Solids by Infilling with Atomic Layer Deposition.

Carrier multiplication-the generation of multiple electron-hole pairs by a single photon-is currently of great interest for the development of highly efficient photovoltaics. We study the effects of infilling PbSe quantum-dot solids with metal oxides by atomic layer deposition on carrier multiplication. Using time-resolved microwave conductivity measurements, we find, for the first time, that c...

متن کامل

High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films

Carrier multiplication, the generation of multiple electron-hole pairs by a single photon, is of great interest for solar cells as it may enhance their photocurrent. This process has been shown to occur efficiently in colloidal quantum dots, however, harvesting of the generated multiple charges has proved difficult. Here we show that by tuning the charge-carrier mobility in quantum-dot films, c...

متن کامل

Phonons Do Not Assist Carrier Multiplication in PbSe Quantum Dot Solids

Carrier multiplication (CM)the Coulomb scattering whereby a sufficiently energetic charge excites a valence electronis of interest for highly efficient quantum dot (QD) photovoltaics. Using time-resolved microwave conductivity experiments on 1,2ethanedithiol-linked PbSe QD solids infilled with Al2O3 or Al2O3/ZnO by atomic layer deposition, we find that CM and hot-carrier cooling are temperatu...

متن کامل

Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots

In carrier multiplication, the absorption of a single photon results in two or more electron-hole pairs. Quantum dots are promising materials for implementing carrier multiplication principles in real-life technologies. So far, however, most of research in this area has focused on optical studies of solution samples with yet to be proven relevance to practical devices. Here we report ultrafast ...

متن کامل

An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells

Solution-processed semiconductor quantum dot solar cells offer a path towards both reduced fabrication cost and higher efficiency enabled by novel processes such as hot-electron extraction and carrier multiplication. Here we use a new class of low-cost, low-toxicity CuInSexS2-x quantum dots to demonstrate sensitized solar cells with certified efficiencies exceeding 5%. Among other material and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Accounts of chemical research

دوره 48 2  شماره 

صفحات  -

تاریخ انتشار 2015